Enhanced Local Magnetization by Interface Engineering in Perovskite-Type Correlated Oxide Heterostructures
نویسندگان
چکیده
منابع مشابه
Structural "δ Doping" to Control Local Magnetization in Isovalent Oxide Heterostructures.
Modulation and δ-doping strategies, in which atomically thin layers of charged dopants are precisely deposited within a heterostructure, have played enabling roles in the discovery of new physical behavior in electronic materials. Here, we demonstrate a purely structural "δ-doping" strategy in complex oxide heterostructures, in which atomically thin manganite layers are inserted into an isovale...
متن کاملEnhanced stability of filament-type resistive switching by interface engineering
The uncontrollable rupture of the filament accompanied with joule heating deteriorates the resistive switching devices performance, especially on endurance and uniformity. To suppress the undesirable filaments rupture, this work presents an interface engineering methodology by inducing a thin layer of NiOx into a sandwiched Al/TaOx/ITO resistive switching device. The NiOx/TaOx interface barrier...
متن کاملUltrafast strain engineering in complex oxide heterostructures.
We report on ultrafast optical experiments in which femtosecond midinfrared radiation is used to excite the lattice of complex oxide heterostructures. By tuning the excitation energy to a vibrational mode of the substrate, a long-lived five-order-of-magnitude increase of the electrical conductivity of NdNiO(3) epitaxial thin films is observed as a structural distortion propagates across the int...
متن کاملEnhanced performance of CH3NH3PbI3−xClx perovskite solar cells by CH3NH3I modification of TiO2-perovskite layer interface
In this work, perovskite solar cells (PSCs) with CH3NH3PbI3-x Cl x as active layer and spiro-OMeTAD as hole-transport media have been fabricated by one-step method. The methylammonium iodide (CH3NH3I) solution with different concentrations is used to modify the interface between mesoporous TiO2 (meso-TiO2) film and CH3NH3PbI3-x Cl x perovskite layer. Several techniques including X-ray diffracti...
متن کاملControl of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry.
Perovskite transition-metal oxides are networks of corner-sharing octahedra whose tilts and distortions are known to affect their electronic and magnetic properties. We report calculations on a model interfacial structure which avoids chemical influences and show that the symmetry mismatch imposes an interfacial layer with distortion modes that do not exist in either bulk material, creating new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Materials Interfaces
سال: 2015
ISSN: 2196-7350
DOI: 10.1002/admi.201400416